Miniature neurotransmission appears to play key role in synapse development
A study has shown that a long-overlooked form of neuron-to-neuron communication called miniature neurotransmission plays an essential role in the development of synapses, the regions where nerve impulses are transmitted and received. The findings, made in fruit flies, raise the possibility that abnormalities in miniature neurotransmission may contribute to neurodevelopmental diseases. The findings, by researchers at Columbia University Medical Center (CUMC), were published today in the online edition of the journal Neuron.
A team of scientists recently discovered why cerebellar granule cell neurons in patients suffering from ataxia-telangiectasia (A-T) were unable to repair DNA damage and thus died.
The researchers used genetically engineered mice to show that myoctye-enhancer factor 2D (MEF2D), a transcription factor that turns on specific genes involved in cell survival, is activated after binding to a protein known as A-T mutated (ATM). When the ATM gene that codes for the ATM protein is mutated, thus causing A-T, ATM-MEF2D-survival signals in response to DNA damage are ineffective and may contribute to neurodegeneration.
An interdisciplinary team of researchers is using mathematical modeling to better understand the mechanisms at play in this kind of injury, with an eye toward protecting the brain from its long-term consequences.
Their recent findings shed new light on the mechanical properties of a critical brain protein and its role in the elasticity of axons, the long, tendril-like part of brain cells. This protein, known as tau, helps explain the apparent contradiction this elasticity presents. If axons are so stretchy, why do they break under the strain of a traumatic brain injury?
The findings pave the way to discover new drugs for misfolding diseases
Scientists at The Scripps Research Institute (TSRI) have invented small-molecule folding probes that enable them to quantify functional, normally folded and disease-associated misfolded conformations (shapes) of a protein-of-interest in cells under different conditions. This new probe technology should lead to a better understanding of how to fold misfolding-prone proteins in cells
Single protein controls Drosophila nervous system development and survival
This research could also potentially impact how science and healthcare think about and treat brain injuries, Kuo said. Currently, damaged neurons that have lost their dendrites are unable to properly communicate with their neighbors, rendering them nonfunctional. The problem could be reversed, he said, by helping neurons modify their original developmental program and regrow new dendrites.